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Considerations of permutation symmetry among the three channels in two-body scattering suggest that 
only amplitudes of symmetry 5 are nonvanishing in the forward direction at infinite energies; the other three-
object symmetries A and D are not represented. For unlike scattering particles, this result is equivalent to an 
earlier one based on Pomeranchuk's theorem. For like particles the restrictions are much stronger and contra­
dict the dominance of universal particle exchange at high energies; limiting cross sections will not generally 
be independent of isotopic spin, although this is accidentally true for NN scattering. Applications are here 
restricted mainly to isotopic spin, although an interesting point emerges: Particles with haK-integer isotopic 
spin must also possess some other intrinsic parameter of spinor character. 

1. INTRODUCTION AND SUMMARY 

FOR any two-body process only two of the Mandel-
stam variables s, t, u are independent. It is often 

convenient to retain the redundant variable, however, 
and even to alter its choice in different regions. Any 
amplitude a(stu) therefore has permutation symmetry 
appropriate to three variables: namely, 6* (totally 
symmetric), A (totally antisymmetric), and D (two-
dimensional). A physical amplitude is generally charac­
terized by some additional indices specific to the channel 
of the reaction, so we write as"^, at^, au^. Exchange 
operations can then be represented by matrices (P acting 
on the index a: 

^a«=i:p(Pa*«^ (1) 

Here as'='{stu) and a/(stu) are generally different func­
tions evaluated for identical arguments. The most im­
mediate choice of a is to represent iostopic spin; we 
maintain this choice throughout, except in a couple of 
elementary applications. 

If the matrices (P are diagonalized, the corresponding 
a can be specified by symmetry: a^, a^, a^ .̂ The com­
pletely symmetric representation is identical in all 
channels and the completely antisymmetric representa­
tion varies only by a sign, which is ignorable for our 
purposes; but for the two-dimensional representation 
the channel must be indicated. Restrictions on a(stu) 
due to exchange symmetry are comparable in rigor to 
those imposed by analyticity and unitarity but may be 
independent in content. The present note examines this 
content, using the phase representation for forward 
scattering at high energies, and concludes that 

the antisymmetric amplitude a^- ' 0 as iv •—> 00, 

(I) 

Here %=^s, t, or u; and y is 2i second Mandelstam 
variable. 

Complete threefold symmetry occurs only in scatter­
ing of like particles (TT-TT, N-N) ; unlike-particle scatter­
ing (TT-A )̂ has just twofold symmetry, conventionally 
between the 5 and u channels. Upon reduction from 
three- to twofold symmetry, D—^ A+S; then theorem 

(I) is equivalent to remanence of the amplitude a^ at 
infinite energy. Closer inspection of this case shows that 

for unlike particles the vanishing amplitudes 
correspond to odd isotopic spins in the t channel, (II) 

This at once implies two well-known results: 

(i) Pomeranchuk's theorem^ on the equality of 
particle and antiparticle cross sections; 

(ii) restriction of the number of independent ampli-
tudesnoAT-^ = [ / ] + ! . 

Here \^x] is the largest integer contained in x, and I is 
the smaller of the two particle isotopic spins. 

For like-particle scattering, one expects (I) and (II) 
still to be valid but supplemented by further restric­
tions; specifically, N^^N^ of the twofold amplitudes 
A and S will combine into threefold representation D, 
for which | a"/̂ "^ I-^ constant in the limit of infinite 
energy. But by (II), all the ar-^O in the limit of 
infinite energy, so that all the corresponding a<+ do also, 
or hence the a^ do not contribute in the infinite limit. 
We thus infer a stronger result: 

Only the totally symmetric amplitude a^ con­
tributes as x—>oo^y=:0-, (iji) 

For unlike particles (III) is equivalent to (I), but for 
like particles it contains the additional statement that 
a^ vanishes in the limit as well as a^. This has the 
corollary: 

(iii) Like-particle cross sections in the infinite limit 
are generally independent of isotopic spin only in case 

Of course the immediately accessible case of N-N 
scattering fulfills this special condition. 

The question arises of the relation between N^ and 
N^. For integer I it appears that A''̂ -= A^^~l; for half-
integer /, N^=^N^. In order to preserve any nonvanish-

11. la. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725 (1958) 
[English transL: Soviet Phys.—JETP 7, 499 (1958)]. 

2M. E. Rose and C. N. Yang, J. Math. Phys. 3, 106 (1962); 
D. Amati, J. Prentki, and A. Stanghellini, Nuovo Cimento 26. 
1003 (1962). 
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ing cross section, we must associate to all half-integer 
I particles one independent internal index also of spinor 
character. This amounts to the '̂correlation^ between 
real and charge space statistics." The combination of 
the two spinor indices then leads to one amplitude of 
type a^. We thus conjecture the following: 

Like-particle scattering has only one nonvanish-
ing forward amplitude at infinite energies. (IV) 

What one means by ''like particles" depends on how 
inclusive is the symmetry classification used. Isotopic 
spin is the least inclusive, and SU(3) represents a con­
siderable generalization. Extension^'^ to SU(6) promises 
to incorporate various real spin varieties into super-
multiplets, so that "like" particles could be all bosons 
or all fermions. If even this distinction disappears in 
some high enough symmetry, one has arrived at a 
universal limiting amplitude for all elastic two-body 
processes; note that it still satisfies corollary (iii) and 
cannot be so naively interpreted as the exchange of a 
"universal particle" with parameters of the vacuum. 

Although theorems (I) to (IV) are in decreasing 
order of reliability, we shall use them all in the examples 
and applications of the following sections. 

2. NOTATION AND DEFINITIONS 

The standard two-body diagram is shown in Fig. 1, 
for which the associated variables are 

P3y 

s={pi+p2y={pz+pA)\ 
t=(pi+pzY=(p2+p,y, 
u=(pi+p4y=(p2+pzy^ 

(2) 

Indices (of isotopic spin) a, ^, y, 8 are, respectively, 
associated with pi, p2, pz, pA- Consider the s channel: 

a-^y^(stu) = E P^s)''^yW(stu), (3) 

where P is a projection operator and X runs over all 
isotopic spin values possible in the s channel. The as^ 
are simple scalar quantities; for both P and / , we must 
specify the defining channel for / , hence I(s). For any 
channel 

PI(s)^^^'P^(.)^^"^-5^rPI(.)^^"^ (4a) 

Pi(s)«^^'Pi(s)'^'"^=P/(s)'^^"^= (2/+1), (4b) 

PICK 

P4,<r 

FIG. 1. Two-body scattering 
diagram. 

P2iS 

where U is an identity operator for isotopic spin in the 
s channel. 

Now suppressing the individual indices a, /5, 7, 5, we 
have 

a(stu)=j: P 7 ( . ) a / = E Fjct)a/= Z FKiu)au''. (6) 
^(s) Jit) K(u) 

To simphfy notation further, we adopt throughout the 
convention in Eq, (6): I, J, K refer to isotopic spins in 
the respective s, t and u channels. By appHcation of 
Eq. (5), 

a''={i2K+l)-^ZP''-P'}a-^, 

K 

(7) 

The quantities in curly brackets are crossing matrices, 
computable by standard methods. From another point 
of view, however, they clearly provide representations 
of the permutation operators (P<„ (P„̂ , (P,̂ . These 
representations are generally reducible, for the matrices 
in Eq. (7) are all square and of dimension (2/+1), 
where I is the minimum isotopic spin of any particle in 
the reaction. Accordingly, we seek to perform the re­
duction of the crossing matrices in Eq. (7) to S+A-\-D 
in cases of physical interest and to exhibit the corre­
sponding eigenvectors. 

3. EXAMPLES OF EXCHANGE SYMMETRY 

(a) Case of like particles, integer /. The special 
simplicity here is that / , / , and K all run over identical 
values from 0 to 2/, so the situation is the same in every 
channel. For pion-pion scattering /= 1, and if we write 
a column matrix 

In more compact notation 

PrwPj ' ( . )=(2 /+ l )8 i r - , 

Zi ' / ( . )=1 . , 

(4c) 

(5a,b) 

(5c) 

it is clear that 

The well-kn( 

W]= 

(?ut^ 

"1 
0 

lo 

a" 

0 
-1 
0 

«D. C. Peaslee, J. Math. Phys. 4, 910 (1963), and earlier 
references quoted there. 

4 A. Pais, Phys. Letters 13, 175 (1964). 
6D. Neville, Phys. Rev. 132, 844 (1963). 

The well-known crossing matrix for this case is 

1 5/3] 
(P«.= 

(8) 

(9) 
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and correspondingly 

(S>su = 

•1 5/3-
(10) 

Upon transforming to the basis 

[5] = a. - (5/3)a2 (11) 

we obtain the desired block structure, 

( P f . = 
ri 0 0 1 
0 - 1 |^^ 

lo i ^ i J 

^ S l t 

ri 
0 

.0 

, (Pnt-

0 
1 
2 

~î ^ 

fl 0 
0 1 

[o 0 
0 ^ 
\^ 
1 
2 ^ 

0] 
0 

- i j 
(12) 

The function a^ is the completely symmetric eigenfunc-
tion on any exchange s ̂ ^^-^ t <-^ u <^ s and corresponds 
to elastic TT̂ -TT̂  scattering, as'^ and ar in Eq. (11) are the 

two components of the representation P , being, respec­
tively, + and — under the ̂ -preserving exchange (9ut' 
Because of the symmetry, this situation is repeated in 
both other channels: the same a^=a^+2a^ in each 
channel, and a/^ = (Puds^, etc. 

If we generalize from simple isotopic spin to the full 
SUs symmetry, the scattering of bosons (i) on them­
selves has 

(9ut = 

1 

(13) 

for the column vector 

M= 

wi 

(14) 

where a^^ is the amplitude for @+(io), the only combina­
tion to occur in this symmetric situation. The crossing 
matrix® for Eq. (14) is 

(15) 

«F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173 
(1964). 

(Pi«= 

r i 
"8 1 
8 
1 
1 
-E 
1 

1 
3 

1 0 
1 
2 1 
5 
2 
5 

1 
1 
2 
1 
2 1 

3 
0 

27/8 
27/40 

- 9 / 8 
7/40 

-9 /40 

5 
2 

— 
0 

— 
1 
2 

Upon transformation to the basis 

[£] = (2/-vJ)a8' 

(2M) t tW 

(16) 

Eq. (13) remains unchanged, but Eq. (15) reduces to 
block structure: 

(9ts-

1 

2 2^*^ 
2VO 2 • 

4^ K 

(17) 

the dots representing zeros. This is the reduction 

(b) Case of unlike particles. Consider first / = | , and 
let Z > | be the other isotopic spin. Complete symmetry 
among the values of / , J, K no longer obtains; by con­
vention we take / , K=L±^, J=0, 1. The crossing 
matrix is still square, and the basis vectors in the ^ and 
u channels correspond; but no a priori correspondence is 
imposed on the basis vector in the / channel. In the s or 
u channel the basis 

[ 5 ] = ( 2 L + l ) - < ^ ^ ^^ .̂ ,̂  ) , (18) 
^d=CL(L-l-l)]i/2(a^i/2-a^i/2)> 

corresponds to 

(Ps 
n 0. 

\o - 1 / 
(19) 

In the t channel the same representation for (P^u 
corresponds to 

m- ( " ) . (20) 

The numerical factors are arranged to make aafiyiaySciff+ 
constants in all channels. We can now equate the basis 
vectors in Eqs. (18) and (20), whence 

6'u=(Put=l ) . (21) 
\ 0 - 1 / 

This identifies the representations 5 and A : 

a s = ( 2 Z + l ) - i [ ( i + l ) a . - ^ i ' 2 + i a , ^ i ' ^ ] = Ot» 
= (2L+l)-i C(L+1) au^"^+La^^^i^2, 

a ^ = d = ( 2 L + l ) - T i ( i + l ) l ' ^ ( a . ^ " 2 _ ^^t-1/2) = ^ ^ , 1 

= ± ( 2 £ + l ) - i [ £ ( £ + l ) ] i ' 2 ( a „ w / 2 _ a„^-i/2). (22) 

The uncertainty of sign in a-^ is of no concern: The 
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identification of a^ is unequivocal and after a^ is 
removed from a 2X2 representation of the three-
element permutation, the remainder must be a^. 

For the general case of KL the only symmetry 
imposed ab initio is again between s and u channels; 
that is, there occurs a reduction from threefold to two­
fold symmetry. Correspondingly, the representation D 
is absent, the a+ and or being subsumed under a^ and 
^^. Counting the + and — eigenvalues of (Psw (most 
conveniently done in the 5 channel for half-integer I 
and in the / channel for integer /) yields the number of 
independent a^: 

iv^=ra+i, (23) 

where [jx~\ is the largest integer contained in x. This has 
previously^ been derived as a corollary to Pomeranchuk's 
theorem^; in Sec. 4 we show that the necessary condi­
tions for Eq. (23) are slightly weaker than for Pomeran-
chuk's theorem. The reason is essentially that the 
Pomeranchuk theorem holds for both 1<L and l=^L, 
while Eq. (23) is only for / < L . In case l=L, Eq. (23) is 
replaced by a much stronger restriction, which requires 
even more conditions than Pomeranchuk's theorem. 

(c) Case of / = L = J . This is again a situation where 
a prescribed relation exists among basis vectors and 
threefold symmetry applies. Take 

(24) 

in all channels. The basis vector (24) in the s channel 
has 

'"Vo - J ' 
and the crossing matrix is 

(Pa 

(25a) 

(25b) 

In this case we must associate the amplitudes a^ and a^ 
with the single representation D, An immediate question 
is the absence of representation 5 ; it occurs in all other 
cases and according to theorem (III) must always be 
present, because it represents the total cross section in 
the high-energy limit. 

Representation 5 can be supplied by requiring that all 
particles of isotopic spin | (by extension, half-odd 
integer) have one other half-odd spin associated with 
them. The direct product DXD' then contains 5. The 
second spin | can belong to another charge index as in 
the iT-meson case; then the meson is really a vector 
rather than a spinor in charge space, as implied by the 
association of K with TT in i??, 6^2, and SU3 classification 
schemes. More interesting is the nucleon case where the 
second spin is in real space; the necessity for S sym­
metry in the amplitude then implies the correlation of 

real and charge space statistics.^ This postulate and 
Theorem I I I derive some mutual support from their 
close connection. 

I t is convenient to write down the basis vectors for 
product DXD^ in the case of two spins | , 

nD+. n+ + -

r 7 i > - = / 7 + -
(26) 

Of course a second spinor index must also be associ­
ated with the / = I in Sec. (b), although it was not made 
explicit. Its influence is apparent in Eqs. (19) and (20), 
however: The exchange symmetries are the opposite of 
those for a pure isotopic spin | , implying the presence 
of other indices in the exchange. 

4. THE PHASE REPRESENTATION 

The phase representation of a function with two 
independent variables has been discussed by Sugawara 
and Nambu,^ and we simply adopt their results. The 
Mandelstam amplitude is written 

a (stu) = Pi (stu)/P2 (stu)Q (stu), (27) 

where Pi , F2 are finite polynomials and Q is a phase 
function having no zeros or poles except at infinity. This 
form has the advantage of simple behavior as 5 —> 00, 
t^O remaining fixed, so that ^—> — 00. Then, provided 
that 

/T 
d(s,t)-8(s=^,t) 

']ds= (convergent), (28) 

with a similar condition on d(u,t), 

Q{stu)-
5 — • o o , 

U—*— 0 0 , 

t = const 

-^mis^/is^-sW'-'^^'^i-

X[u^/{m-u)J^-=^>'^i-. (29) 

Here 5o>0 is the threshold value at which the physical 
phase b{s,t) first becomes nonvanishing in the s channel, 
and likewise for UQ. For fixed ,̂ the function /3 {t) is just 
a constant normalized to /5(0) = 1. 

In accord with experimental indications for strong 
interactions, we take b{x= 00, 3; = 0) = 7r/2 for all for­
ward scattering amplitudes in the limit of infinite 
energy any ± signs being absorbed into P1/P2. Then, 
except for inconsequential constant factors involving 
5o and ^0, Eq. (29) becomes 

Q{s, t=0,u) —^is~ as (30) 

Equation (30) is a basic assumption of theorem I, 
which therefore does not encompass Coulomb scattering 
or very weak interactions like v-e scattering. 

7M. Sugawara and Y. Nambu, Phys. Rev. 131, 2335 (1963); 
132, 2724 (1963). 
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By the original definition of the phase representation, 
only the imaginary part of InQ is unique, variations in 
the real part of InQ being absorbed in P1/P2. The sym­
metry of Q is therefore specified by that of Im{lnQ}: 
namely S for the forward scattering amplitude in the 
high-energy Hmit. This fixing of the permutation sym­
metry of Q is really arbitrary and represents a degree of 
freedom inherent in the phase representation; we have 
made the choice of greatest convenience, so that the 
permutation symmetry of a will be given by Pi (we can 
take P2 to be S without loss of generality). It should be 
emphasized that we have now used up all the arbitrari­
ness available in the phase representation, so that the 
details of Pi are completely significant. 

A totally symmetric Pi must have the form 

P^= E aimn(s+t+Uy(st+tU+USy(sluy 
Imn 

= T, (''mn(,St+tU+ us)"(stu)" , (31) 

since (s+t+uy=const, in this case. The simplest 
antisymmetric polynomial is 

PQA ̂  (^_ )̂ (̂ __ ^) (t-u), (32) 

and it is readily shown that all antisymmetric poly­
nomials are of the form P^ = P^Po^, From this fact and 
Eqs. (31) and (32) it is clear that as 5—> 00, P^ and P^ 
behave, respectively, as even and odd powers of 5; in 
combination with Eq. (30) this means that P^ may 
contribute to the dominant forward scattering ampli­
tude which goes to s, but P^ cannot. 

The two-dimensional representation D has two basic 
polynomial pairs, 

PQ+=2s-(t+u), 

Pr=^^{t-u), 

Pe+=2s^-(l'+u^), 

P r = v 5 ( ^ ' - ^ ' ) . 

(33a) 

(33b) 

Any polynomial of symmetry D can be expressed as a 
symmetric polynomial times Po^ plus another sym­
metric polynomial times Pe^. The term containing P(P 
is eliminated in the same way as P^, since it goes as an 
odd power when 5—> 00. 

Elimination of P^ alone establishes theorem I for the 
case KL, as well as the formula of Eq. (23); the argu­
ments leading to Eq. (23) yield theorem 11. EHmination 
of both P^ and Po^ is sufficient to establish Pomeran-
chuk's theorem^ on the equality of total cross sections 
for particle and antiparticle on any target in the high-
energy limit. In the s channel this is equivalent to sym­
metry under s<r-^u, with ^—>0~; this symmetry is 
inherent for P^ and obtains under the condition 
s->-u-^± 00 ioY PP in Eq. (33b). 

The question of PP remains only for the case l=L\ 
but in a sufficiently high-energy limit differences of 

rest mass or even charge cannot serve to distinguish 
particles. There is then no way of separating forward 
from backward scattering in any channel, a distinction 
inherent in PP; e.g., Pe~ changes sign on / <-̂  ^. A more 
formal way to see that PP is physically inappropriate 
is to note an inescapable ambiguity of sign in the ratio 
P^/Pr —^ const, in the high-energy unit. But if the 
ratio should be negative for forward scattering, one of 
the amplitudes will be antiunitary. 

This leaves only P^ for the case /=JL, and we arrive 
at theorem III. Theorem IV is merely extrapolated 
from the examples below. 

5. APPLICATIONS 

(a) Nucleon-Nucleon Scattering 

Here the real and isotopic spins must be combined as 
in Eq. (26). The amplitudes a^^ then satisfy theorem I 
as follows: 

2U 

a 
^01 ^10 

. ^ i - | a ^ (34) 

0. 

for forward scattering in the high-energy limit. The 
corresponding cross sections all tend to equality, 

' | a " + i a « - > i a ^ 

(7p.~f «"+§ ai''+|a»i+|a«' -^ W, 
(35) 

with identical limits for (Xnp and o-̂ p, respectively. These 
are two more of Pomeranchuk's theorems.̂ *^ It would 
be of interest to see experimentally whether nucleon-
nucleon cross sections <J^^ and o-̂^ vanish at extreme 
energies. 

(b) Pion-Nucleon Scattering 

Let a^=a^\ then for infinite energy in the s or 
u channel 

7 I /2 . nm - (36) 

which is the Okun'-Pomeranchuk theorem.^ In the t 
channel w_e have not made the real spin index explicit 
for the NN side, although isotopic spin has been treated 
correctly. Since the real spin amplitudes a}_ and a? ex­
change roles on passing from̂ Â AT" to NN^ the non-
vanishing amplitudes in the NN channel are a^^ and a^^ 
from Eq. (34); the statement of Eq. (36) is that only a^^ 
contributes to ÂÂ  -^ TTTT. This does not, however, imply 
any specific relationship between the a^ of Eqs. (34) 
and (36). 

81. la. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 30, 423 (1956) 
[English transL: Soviet Phys.—JETP 3, 306 (1956)]. 

^ L. B. Okun' and I. la. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 
30, 424 (1956) [English transl.: Soviet Phys.—JETP 3, 307 
(1956)]. 
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(c) Contradiction to Universal Particle 
Exchange 

In^° each of the examples above, the total cross section 
turns out independent of isotopic spin in the high-energy 
limit. Although this is not a general feature (corollary 
iii), it has given rise to the postulate of universal particle 
exchange (UPE): All reactions in the high-energy 
limit are assumed to be dominated by exchange of a 
universal particle with parameters of the vacuum, in 
particular 7=0. The present approach contradicts this 
assumption, the simplest counterexample being TT-TT 
scattering,^^ 

a^ -> {5/9)a^, â  -> 0, a"-^ (2/9)a^. (37) 

Another present departure from UPE is the apparent 
lack of any special relation among the various a^ in 
Eqs. (35)-(37). Note that Eqs. (36) and (37) imply a 
vanishing contribution of p exchange to TT-TT and w-N 
scattering in the high-energy limit. By extension, this 
implies that y-N scattering is pure isoscalar in the high-
energy limit.12 

(d) Application of -̂75 Formulas 

The assignments in Eq. (37) are illuminated by an 
interesting calculation of Kawaguchi,^^ where the 
process Tr+iY —̂  N-\-2ir is considered as arising entirely 
from TT-TT knock-on. His Eq. (2.14) gives the various 
cross sections in terms of four amplitudes: 

a-(TT-+^ -> Tr-+TT++^) - i I ̂ 3/2(5) I '+ I \az,2{a)+laii2{a) \2, 

cT{ir--^P -^ TT-+TT++ )̂ = 1 id)i%3/2(^)-f^i/2(^) 1̂ + |\'^az„{a)-\^l2ai„{a) \ 

m 

Here the subscript denotes the total isotopic spin of the 
system; the argument a denotes antisymmetric (/=1) 
states of the two final pions; and 5 denotes symmetric 
states, with 1=2 for az/2(s) and 7=0 for ai/2(s). If the 
partial cross sections for the TT —̂  2TT process obey the 
same equality as given in Eq. (36) for the total cross 
sections, we expect 

a-(Tr++^)= \a^f2{s)\^+\az/2(a)\^ = (i(T~+p) 

= ik3/2(^) P + i 1̂ 3/2 (̂ ) P 

+i\aif2(s)\'+i\ay2(a)\\ (39) 

or hence [Eq. (2.15) of Ref. 10], 

\<^sf2(s)\'+\a,f2(a)\'= \ay2(s)\'+\aif2ia)\\ (40) 

A number of conditions for satisfying Eq. (40) are 
discussed in Ref. 13; the author favors a(s) = 0 and 
^3/2(̂ ) = ^i/2(^), on the grounds that all cross sections 
for nucleon charge exchange vanish. Equation (37) 
implies on the other hand that 

a(a) = 0, \iy/2a,Ms)may2(s)\'==a^/a'=i, (41) 

or hence |̂ 3/2(^) | = 1̂ 1̂/2(̂ )1. The factor ^y/2asf2(s) 
occurs because of the normalization adopted in Ref. 13. 
Conditions (41) also satisfy Eq. (40), but do not imply 
the vanishing of nucleon charge exchange: This is 
another feature of the simplest situation (T-N scatter-

^°If UPE is in fact an incorrect idea, it seems hardly fair to 
name it after the author of Ref. 8, who did not suggest it. 

^̂  Note that a^ always contains some 7 = 0 component, so that no 
contradiction is implied to the theorems of L. L. Foldy and R. F. 
Peierls, Phys. Rev. 130, 1585 (1963), or of D. Amati, L. L. Foldy, 
A. Stanghellini, andL. Van Hove, Nuovo Cimento 32,1685 (1964). 

ing) that does not extrapolate to more complicated ones 
under the present approach. 

(e) i^-A: Scattering 

Simple isotopic spin conservation and Pomeranchuk's 
theorem on antiparticles are sufficient to ensure that the 
forward scattering amplitudes at infinite energy satisfy 

a{K+K+)=^a{K+K-)----a(K-K-) = a{K^K^) 
= a(K'K^) = a{K'K^), (42a) 

a{K-K^) = a(K-K^). (42b) 

There are at most two amplitudes which can be related 
to the a}^ and aP^ of Eq. (26). Theorem III then implies 
a relation between these amplitudes, readily found to be 

a(K+K^) = a{K+K')--

a(KK)- (43) 

a constant for all elastic K-K forward amplitudes, 
independent of isotopic spin or hypercharge as expected 
whenever /==|. 

(f) Boson Octet-Octet Scattering 

In the limit of infinite energy where rest-mass 
differences are negligible, we may assume boson-boson 
scattering to follow SU3 octet symmetry. Vanishing of 
all but the first line of Eq. (16) implies 

a':a^:a''==5:S:27, 
(44) 

We may then use a table^^ of Clebsch-Gordan coeffi-

12 M. Kawaguchi (private communication). 
13 M. Kawaguchi, Progr. Theoret. Phys. (Kyoto) 28, 829 (1962). 
14 J. J. De Swart, Rev. Mod. Phys. 35, 916 (1963). 
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dents for ®X(D to obtain ratios of various physical 
scattering amplitudes: 

a{KK) = a^f^iKir) = a>l^ (KT) = a^inr) 
= a(K'n) = a(Trr}) = a^, (45) 

â (7r7r) = 0, a°(7r7r) = fa^, a(rjrj) = ^a^. 

Equation (45) relates the a^ of Eqs. (37) and (43) with 
those for several other processes; in the present ap­
proach such relations are not universal but result from 
the specific assumption of a higher symmetry. 

(g) Boson-Fermion Octet Scattering 

Although certain objections may be raised^ against 
the use of octet symmetry for fermion-boson inter­
actions, we can apply the formulas without difficulty; 
in this case, only twofold symmetry obtains, and there 
are three possible independent cross sections in the 

(46) 

s channel: 
a(rjN) 

a> (KN) = iC^i (KN)+a'{KN)2 

The separate Eqs. (46) are sufficient to satisfy Pomeran-
chuk's theorem without necessarily implying isotopic 
spin independence for KN or KN scattering. In this 
case isotopic spin is only part of a more inclusive sym­
metry. The appearance in high-energy data of a 
familial relation between TTN and KN scattering has 
been pointed out.̂ ^ 
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Boson-Pole Model in AT-Meson and ly-Meson Decays* 
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The direct term of the decay mode i^—>7r+7r+7 and the decay amplitudes if —>TTH-TT+TT and rj-^ 
TT+TT+Tr are obtained on the basis of the boson-pole model to all orders in the strong interaction, provided the 
interaction (except for the weak vertex) is SUs-invariant. The weak vertex is assumed to transform as K°. 
Then all K —> TT-J-TT+Y modes, except 7̂ 2° ~^ 7r"̂ x~7, and all K —> TT+TT+TT and r} -^ TTH-TT+TT modes, except 
(77 |7r'''7r~x®), are shown to vanish. It is concluded that the boson-pole model together with unitary symmetry 
is untenable for K —^Sir decay modes. 

1. INTRODUCTION 

THE boson-pole modeP has been used to compute 
the direct term of the K —» 27r+7 mode,^ iT —> STT 

and 1] —> STT modes, '̂̂  as well as other processes. In this 
model, the initial boson Fi converts into another boson 
P2 by a weak vertex Pi —> P2, which then turns into the 
final states F2—>PZ+PA+J (radiative mode) or 
P2-^Pz+Pi+P5 (37r mode) by electromagnetic and 
strong interactions, i.e., for example, 

PI-^P2-^PZ+PA+7. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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There is another class of diagrams in which the weak 
vertex follows the electromagnetic and strong inter­
actions, i.e., 

Pi ^ P2+P3+T -> P4+P3+T. 

The part of the diagram that depends on the electro­
magnetic and strong interactions can be regarded in 
unitary space as y+P-^P+P and P+P—^P-^P, 
i.e., two octets transforming into two other octets.^'^ 
The photon transforms as a singlet 0̂  plus the third 
component of a vector p°, i.e., 

It will be shown later that because of conservation of 
momentum, it is a reasonable approximation to combine 
the two types of diagrams when the bosons have their 
respective physical masses. 

6M. Gell-Mann, Phys. Rev. 125, 1067 (1962): Y. Ne'eman, 
Nucl. Phys. 26, 222 (1961). 

6 We have explicitly verified that the amplitude o f8X8~>8X8 
lead to the same results as the amplitudes of 8—»8X8X8. The 
former is more convenient to consider. The author benefited by 
discussions with R. G. Sachs and B. Barrett. 


